Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand.

Identifieur interne : 000048 ( Main/Exploration ); précédent : 000047; suivant : 000049

A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand.

Auteurs : Anya S. Noble [Nouvelle-Zélande] ; Stevie Noe [Nouvelle-Zélande] ; Michael J. Clearwater [Nouvelle-Zélande] ; Charles K. Lee [Nouvelle-Zélande]

Source :

RBID : pubmed:32790769

Descripteurs français

English descriptors

Abstract

The phyllosphere microbiome is increasingly recognised as an influential component of plant physiology, yet it remains unclear whether stable host-microbe associations generally exist in the phyllosphere. Leptospermum scoparium (mānuka) is a tea tree indigenous to New Zealand, and honey derived from mānuka is widely known to possess unique antimicrobial properties. However, the host physiological traits associated with these antimicrobial properties vary widely, and the specific cause of such variation has eluded scientists despite decades of research. Notably, the mānuka phyllosphere microbiome remains uncharacterised, and its potential role in mediating host physiology has not been considered. Working within the prevailing core microbiome conceptual framework, we hypothesise that the phyllosphere microbiome of mānuka exhibits specific host association patterns congruent with those of a microbial community under host selective pressure (null hypothesis: the mānuka phyllosphere microbiome is recruited stochastically from the surrounding environment). To examine our hypothesis, we characterised the phyllosphere and associated soil microbiomes of five distinct and geographically distant mānuka populations across the North Island of New Zealand. We identified a habitat-specific and relatively abundant core microbiome in the mānuka phyllosphere, which was persistent across all samples. In contrast, non-core phyllosphere microorganisms exhibited significant variation across individual host trees and populations that was strongly driven by environmental and spatial factors. Our results demonstrate the existence of a dominant and ubiquitous core microbiome in the phyllosphere of mānuka, supporting our hypothesis that phyllosphere microorganisms of mānuka exhibit specific host association and potentially mediate physiological traits of this nationally and culturally treasured indigenous plant. In addition, our results illustrate biogeographical patterns in mānuka phyllosphere microbiomes and offer insight into factors contributing to phyllosphere microbiome assembly.

DOI: 10.1371/journal.pone.0237079
PubMed: 32790769
PubMed Central: PMC7425925


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand.</title>
<author>
<name sortKey="Noble, Anya S" sort="Noble, Anya S" uniqKey="Noble A" first="Anya S" last="Noble">Anya S. Noble</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Science, University of Waikato, Hamilton</wicri:regionArea>
<wicri:noRegion>Hamilton</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noe, Stevie" sort="Noe, Stevie" uniqKey="Noe S" first="Stevie" last="Noe">Stevie Noe</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Science, University of Waikato, Hamilton</wicri:regionArea>
<wicri:noRegion>Hamilton</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clearwater, Michael J" sort="Clearwater, Michael J" uniqKey="Clearwater M" first="Michael J" last="Clearwater">Michael J. Clearwater</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Science, University of Waikato, Hamilton</wicri:regionArea>
<wicri:noRegion>Hamilton</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Charles K" sort="Lee, Charles K" uniqKey="Lee C" first="Charles K" last="Lee">Charles K. Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Science, University of Waikato, Hamilton</wicri:regionArea>
<wicri:noRegion>Hamilton</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32790769</idno>
<idno type="pmid">32790769</idno>
<idno type="doi">10.1371/journal.pone.0237079</idno>
<idno type="pmc">PMC7425925</idno>
<idno type="wicri:Area/Main/Corpus">000010</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000010</idno>
<idno type="wicri:Area/Main/Curation">000010</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000010</idno>
<idno type="wicri:Area/Main/Exploration">000010</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand.</title>
<author>
<name sortKey="Noble, Anya S" sort="Noble, Anya S" uniqKey="Noble A" first="Anya S" last="Noble">Anya S. Noble</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Science, University of Waikato, Hamilton</wicri:regionArea>
<wicri:noRegion>Hamilton</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noe, Stevie" sort="Noe, Stevie" uniqKey="Noe S" first="Stevie" last="Noe">Stevie Noe</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Science, University of Waikato, Hamilton</wicri:regionArea>
<wicri:noRegion>Hamilton</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clearwater, Michael J" sort="Clearwater, Michael J" uniqKey="Clearwater M" first="Michael J" last="Clearwater">Michael J. Clearwater</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Science, University of Waikato, Hamilton</wicri:regionArea>
<wicri:noRegion>Hamilton</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Charles K" sort="Lee, Charles K" uniqKey="Lee C" first="Charles K" last="Lee">Charles K. Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Science, University of Waikato, Hamilton</wicri:regionArea>
<wicri:noRegion>Hamilton</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Leptospermum (classification)</term>
<term>Leptospermum (microbiology)</term>
<term>Microbiota (MeSH)</term>
<term>New Zealand (MeSH)</term>
<term>Phylogeography (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Leptospermum (classification)</term>
<term>Leptospermum (microbiologie)</term>
<term>Microbiote (MeSH)</term>
<term>Nouvelle-Zélande (MeSH)</term>
<term>Phylogéographie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>New Zealand</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Leptospermum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Leptospermum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Leptospermum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Host-Pathogen Interactions</term>
<term>Microbiota</term>
<term>Phylogeography</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
<term>Leptospermum</term>
<term>Microbiote</term>
<term>Nouvelle-Zélande</term>
<term>Phylogéographie</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Nouvelle-Zélande</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The phyllosphere microbiome is increasingly recognised as an influential component of plant physiology, yet it remains unclear whether stable host-microbe associations generally exist in the phyllosphere. Leptospermum scoparium (mānuka) is a tea tree indigenous to New Zealand, and honey derived from mānuka is widely known to possess unique antimicrobial properties. However, the host physiological traits associated with these antimicrobial properties vary widely, and the specific cause of such variation has eluded scientists despite decades of research. Notably, the mānuka phyllosphere microbiome remains uncharacterised, and its potential role in mediating host physiology has not been considered. Working within the prevailing core microbiome conceptual framework, we hypothesise that the phyllosphere microbiome of mānuka exhibits specific host association patterns congruent with those of a microbial community under host selective pressure (null hypothesis: the mānuka phyllosphere microbiome is recruited stochastically from the surrounding environment). To examine our hypothesis, we characterised the phyllosphere and associated soil microbiomes of five distinct and geographically distant mānuka populations across the North Island of New Zealand. We identified a habitat-specific and relatively abundant core microbiome in the mānuka phyllosphere, which was persistent across all samples. In contrast, non-core phyllosphere microorganisms exhibited significant variation across individual host trees and populations that was strongly driven by environmental and spatial factors. Our results demonstrate the existence of a dominant and ubiquitous core microbiome in the phyllosphere of mānuka, supporting our hypothesis that phyllosphere microorganisms of mānuka exhibit specific host association and potentially mediate physiological traits of this nationally and culturally treasured indigenous plant. In addition, our results illustrate biogeographical patterns in mānuka phyllosphere microbiomes and offer insight into factors contributing to phyllosphere microbiome assembly.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32790769</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand.</ArticleTitle>
<Pagination>
<MedlinePgn>e0237079</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0237079</ELocationID>
<Abstract>
<AbstractText>The phyllosphere microbiome is increasingly recognised as an influential component of plant physiology, yet it remains unclear whether stable host-microbe associations generally exist in the phyllosphere. Leptospermum scoparium (mānuka) is a tea tree indigenous to New Zealand, and honey derived from mānuka is widely known to possess unique antimicrobial properties. However, the host physiological traits associated with these antimicrobial properties vary widely, and the specific cause of such variation has eluded scientists despite decades of research. Notably, the mānuka phyllosphere microbiome remains uncharacterised, and its potential role in mediating host physiology has not been considered. Working within the prevailing core microbiome conceptual framework, we hypothesise that the phyllosphere microbiome of mānuka exhibits specific host association patterns congruent with those of a microbial community under host selective pressure (null hypothesis: the mānuka phyllosphere microbiome is recruited stochastically from the surrounding environment). To examine our hypothesis, we characterised the phyllosphere and associated soil microbiomes of five distinct and geographically distant mānuka populations across the North Island of New Zealand. We identified a habitat-specific and relatively abundant core microbiome in the mānuka phyllosphere, which was persistent across all samples. In contrast, non-core phyllosphere microorganisms exhibited significant variation across individual host trees and populations that was strongly driven by environmental and spatial factors. Our results demonstrate the existence of a dominant and ubiquitous core microbiome in the phyllosphere of mānuka, supporting our hypothesis that phyllosphere microorganisms of mānuka exhibit specific host association and potentially mediate physiological traits of this nationally and culturally treasured indigenous plant. In addition, our results illustrate biogeographical patterns in mānuka phyllosphere microbiomes and offer insight into factors contributing to phyllosphere microbiome assembly.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Noble</LastName>
<ForeName>Anya S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Noe</LastName>
<ForeName>Stevie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clearwater</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Charles K</ForeName>
<Initials>CK</Initials>
<Identifier Source="ORCID">0000-0002-6562-4733</Identifier>
<AffiliationInfo>
<Affiliation>School of Science, University of Waikato, Hamilton, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031649" MajorTopicYN="N">Leptospermum</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064307" MajorTopicYN="Y">Microbiota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009520" MajorTopicYN="N" Type="Geographic">New Zealand</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058974" MajorTopicYN="N">Phylogeography</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32790769</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0237079</ArticleId>
<ArticleId IdType="pii">PONE-D-20-02828</ArticleId>
<ArticleId IdType="pmc">PMC7425925</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2018 Jan 8;19(1):30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29310587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2020 May 21;8(1):70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32438916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Sep 27;11(9):e0163717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27676607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2011 Jul;26(7):340-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21561679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2012 May;101(4):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22200783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Jun 1;35(6):1547-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29722887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Oct;212(1):192-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27306148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2002;93(5):857-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12392533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2017 Feb;25(2):125-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27919551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19801464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Apr;73(8):2708-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 22;8(4):e61217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23630581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 May;65(9):1255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15184010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2019 Sep 1;95(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31429869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2010 Jun;4(6):719-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20164863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Mar;28(3):274-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25679538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2016 Jun 20;62(11):953-960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27696898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Aug;73(16):5261-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2016 May;71(4):954-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26883131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2019 Jun;49:41-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31707206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2019 Jun;49:50-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31715441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Oct 1;26(19):2460-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2014 Oct 22;62(42):10332-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25277074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2012 May;6(5):1046-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22170424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Feb;4(2):102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2012 Jan;14(1):4-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22004523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Dec;10(12):828-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23154261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 22;457(7228):480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19043404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 May;77(10):3202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Sep;78(17):6187-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22752165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2018 Mar 1;6(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29496824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2012 Nov 1;361:7-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22960208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2019 Feb;106(2):171-173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30726571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2010 Nov;12(11):2885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2012 Oct;64(3):714-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22544345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2015 Mar 24;6(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25805735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2016 Aug 24;4:e2367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27635335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Nov;77(21):7647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21926212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 May 14;10(7):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 May;2(5):561-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18273066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2016 Jun 18;4(1):27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27316353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Nov 16;43(20):e135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26152304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2020 May 11;375(1798):20190253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32200748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Nov 4;17(1):876</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27814679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Sep 12;10(1):4135</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31515535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2020 Jun 30;8(1):103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32605663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1993 May;10(3):512-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2012 May;80(2):312-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22611551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2009 May 26;344(8):1050-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19368902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiome. 2019 Jan 29;7(1):13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30696492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microorganisms. 2019 Nov 01;7(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31683878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Comp Biol. 2017 Oct 01;57(4):770-785</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29048537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultrastruct Pathol. 2016;40(2):107-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26986806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2018 Jan;20(1):124-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29266641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Nutr Food Res. 2008 Apr;52(4):483-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18210383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 May 8;19(1):332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29739332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 2006 Jun;62(2):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16918900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 2;488(7409):86-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22859206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2018 Mar 5;121(3):501-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29300875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2013 Dec 20;4:400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24391634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2018 May;22(3):537-552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29492666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2015 Jul;17(7):2352-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25367625</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
</country>
</list>
<tree>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Noble, Anya S" sort="Noble, Anya S" uniqKey="Noble A" first="Anya S" last="Noble">Anya S. Noble</name>
</noRegion>
<name sortKey="Clearwater, Michael J" sort="Clearwater, Michael J" uniqKey="Clearwater M" first="Michael J" last="Clearwater">Michael J. Clearwater</name>
<name sortKey="Lee, Charles K" sort="Lee, Charles K" uniqKey="Lee C" first="Charles K" last="Lee">Charles K. Lee</name>
<name sortKey="Noe, Stevie" sort="Noe, Stevie" uniqKey="Noe S" first="Stevie" last="Noe">Stevie Noe</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000048 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000048 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32790769
   |texte=   A core phyllosphere microbiome exists across distant populations of a tree species indigenous to New Zealand.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32790769" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020